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COMBINING PARAMETRIC AND NON-PARAMETRIC 

METHODS TO COMPUTE VALUE-AT-RISK 

 

 
Abstract. We design a system for calculating the quantile of a random 

variable that allows us combining parametric and non-parametric estimation 

methods. This approach is applicable to evaluate the severity of potential losses 

from existing data records; therefore, it is useful in many areas of economics and 

risk evaluation. The procedure is based on an initial parametric model assumption 

and then a nonparametric correction is introduced. In addition, a second 

correction is proposed so that the value at risk estimator is asymptotically optimal. 

Our procedure allows smoothing the tail behavior of the empirical distribution.  

Due to the lack of sample information for extreme values, smoothness in the tail 

cannot be achieved if classical nonparametric estimators are used. We apply this 

method to a real problem in the area of motor insurance. 

Keywords: quantile, nonparametric, loss models, extremes, risk evaluation 
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1.  Introduction and motivation 

 

Risk quantification is often carried out in two steps: first, a tolerance level 

is fixed and, second, value at risk is calculated. Value at risk is the amount that is 

exceeded by one individual loss with probability equal to the corresponding 
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tolerance level. So this notion corresponds to the concept of quantile of a statistical 

distribution (for a general notion of risk see [16]). 

In practice, data records from observed losses conform the basis for a 

statistical analysis that leads to risk quantification.  However, risk managers need 

to rely on assumptions about the statistical behavior of these existing data. Three 

classical statistical approaches to estimating value at risk can be followed: i) the 

empirical statistical distribution of the loss or a smoothed version can be used, ii) a 

Normal or Student’s t distribution can be assumed, or iii) another parametric model 

can be fitted (see [10] and [14]). Sample size is a key factor in determining the 

eventual method. To use the empirical distribution function, a minimum sample 

size is required. The Normal approximation provides a straightforward expression 

for the value at risk, but unfortunately many losses or their transformations (for 

example, logarithmic transformation) are far from having a Normal shape or even a 

Student’s t distribution. Alternatively, a suitable parametric density to which the 

loss data should fit could be found. Note that the methods proposed by [15] for 

estimating the quantile are not suitable for highly asymmetric distributions as has 

been shown in [1]. A nonparametric approach, such as classical kernel estimation 

(CKE), smooths the shape of the empirical distribution and “extrapolates” its 

behavior when dealing with extremes. However, when the losses variable is right 

skewness the number of sample observations in the right tail of the distribution is 

scarce, for this reason the CKE cannot smooth the shape of the empirical 

distribution and, therefore, it cannot extrapolate the shape of the distribution above 

the maximum observed value in the sample.  For this reason, we propose a two-

step estimation procedure. First, we fit a parametric model. Second, we use a 

transformed kernel estimation (TKE) method, thus ensuring that the final result is 

asymptotically optimal and it is guaranteed that the shape of the right tail is 

extrapolated. The TKE method is based on a transformation of the original data so 

that the transformed data follow a distribution that can be estimated optimally with 

the CKE. The procedure is based on the ideas of stochastic simulation, i.e. we 

generate values from a Uniform(0,1) distribution using a parametric cumulative 

distribution function (cdf) and second we use the inverse of another cdf that allows 

us to implement the CKE. 

In this paper we present a system to quantify risk and show that it is 

suitable to estimate extreme quantiles of a skewed distribution with heavy right 

tail. There are lots of applications in finance and economics that require the 

analysis of extreme values with skewed data and for which it is questionable to 

assume a particular statistical distribution parametric hypothesis.  Figures 1 and 2 

present how a risk quantification basic system should be implemented, either 

directly using a parametric or a non-parametric method (Figure 1) or combining 

both (Figure 2). 
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Figure 1: Description of a classical risk quantification procedure 

 

 

Figure 2: Proposed risk quantification system based on combining 

parametric and nonparametric methods 
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2.  Notation 

Let  be a random variable that represents a loss with cdf . For instance, 

 may refer to the cost of an operational failure or an accident. The larger the cost 

is, the larger the severity of the loss event. The value at risk ( ) is also known as 

the quantile of  and it is defined as: 

                                (1) 

where the confidence level α is a probability close to 1.  So, we calculate a quantile 

in the right tail of the distribution.  is the cost level that an α proportion of 

losses does not exceed. So, a fraction of losses (1 − α) would exceed that level. 

As we are interested in calculating , we need an assumption 

regarding the stochastic behavior of losses or, as we suggest, we need to estimate 

the cdf  with no distributional assumptions. 

 

3.  Nonparametric quantile estimation 

3.1. Empirical distribution 

Estimation of  is straightforward when  in (1) is replaced by the 

empirical distribution: 

                                       (2) 

where I (·) is an indicator function which takes values 1 or 0.  I (·) = 1 if the 

condition between parentheses is true, then 

                                           .                                  (3) 

The bias of the empirical distribution is zero and its variance is: 

. 

The empirical distribution is straightforward and it is an unbiased estimator 

of the cdf, but it cannot be extrapolated beyond the maximum observed data point. 

This is particularly troublesome if the sample is not too large and it is suspected 

that a loss larger than the maximum observed loss in the data sample might occur. 
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3.2. Classical Kernel Methods 

Classical kernel estimation (CKE) of cdf  is obtained by integration of 

the classical kernel estimation of its probability density function (pdf) , which is 

defined as follows: 

                                           (4) 

where  is a pdf, which is known as the kernel function. Some examples of very 

common kernel functions are the Epanechnikov and the Gaussian kernel (see [17]). 

Parameter  is known as the bandwidth or smoothing parameter. It controls the 

smoothness of the cdf estimate. The larger  is, the smoother the resulting cdf. 

Function  is the cdf of . 

The usual expression for the kernel estimator of a cdf is easily obtained: 

                 (5) 

 

To estimate  , the Newton-Raphson method is applied: 

. 

The classical kernel estimation of a cdf as defined in (5) bears many 

similarities to the expression of the well-known empirical distribution in (2). In (5) 

 should be replaced by  in order to obtain (2). The main 

difference between (2) and (5) is that the empirical cdf only uses data below  to 

obtain the point estimate of , while the classical kernel cdf estimator uses all 

the data above and below , but it gives more weight to the observations that are 

smaller than  than it does to the observations that are greater than . It has already 

been noted by [12] and [2] that, when , the mean squared error (MSE) of 

can be approximated by: 

 

.            (6) 
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The resulting first two terms in (6) correspond to the asymptotic variance and the 

third term is the squared asymptotic bias. The kernel cdf estimator has less 

variance than that of the empirical distribution estimator, but it has some bias 

which tends to zero if the sample size is large. 

The value for the smoothing parameter  that minimizes (6) asymptotically 

is:  

                          (7) 

where subindex  indicates that the smoothing parameter is optimal at this point. 

Moreover, Azzalini(1981) in [2] showed that (7) is also optimal when calculating 

the quantiles (i.e. ). However, in practice, calculating  is not simple 

because it depends on the true value of  and the quantile  is also unknown. 

An alternative to the smoothing parameter in (7) is to use the rule-of-thumb 

proposed in [17], but since the objective in this paper is to estimate a quantile in 

the right tail of a distribution, [1] recommended calculating the bandwidth using a 

smoothing parameter that minimizes the weighted integrated squared error (WISE) 

asymptotically, i.e.: 

                 

The value of  that minimizes WISE asymptotically is: 

       .                                (8)  

and when replacing the theoretical true density  by the Normal pdf, the estimated 

smoothing parameter is: 

.                                                    (9) 

Various methods to calculate  exist. For instance, cross-validation and 

plug-in methods (see, for example, [8]) are very usual. However, these methods 

require considerable computational effort in large data sets. 

3.3. Transformed Kernel Estimation 

Transformed kernel estimation (TKE) is better than classical kernel density 

estimation when estimating distributions with right skewness (see [4], [9], [5], [7] 

and [3]). Even if a large sample is available, the number of observations in the 

right tail are scarce and standard nonparametric estimates are inefficient to estimate 

an extreme quantile, such as when . 
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Transformed kernel estimation is based on applying a transformation to the 

original variable so that the transformed variable has a symmetric distribution. 

Once classical kernel estimation is implemented on the transformed data, the 

inverse transformation returns to the original scale. 

Let  be a concave transformation,  and ,  

are the transformed data, the transformed kernel estimation of the original cdf is: 

                                     (10)  

where  and  are as defined in Section 3.2. 

When estimating , the following equation needs to be solved to find 

: 

 

and then  is estimated using the inverse of the transformation on . 

The smoothing parameter in the transformed kernel estimation of a cdf or 

quantile is the same as the smoothing parameter in the classical kernel estimation 

of cdf associated to the transformed variable. We can calculate the bandwidth in 

(9) if  is replaced by . 

Many studies have proposed transformations in the context of the 

transformed kernel estimation of the pdf (see [19], [4], [9], [11], [13] and [3]).  

However only a few studies analyze the transformed kernel estimation of the cdf 

and quantile (see [1]).  These transformations can be classified into those that are a 

cdf and those that do not correspond to a specific cdf. Moreover, non- parametric 

cdf transformations can also be considered. If  is a parametric cdf, then 

transformed kernel estimation in (10) can be interpreted as a parametric estimation 

with a nonparametric correction. In [1] it has been shown that the MSE of TKE is:  

(11) 

In expression (11) it can be seen that when  is the same as the theoretical cdf  

, then the bias of the transformed kernel estimation is zero. Moreover, if  

 is not the same as the theoretical cdf , then the TKE is a consistent 

estimator, given that  when . However, if we use a parametric 
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model and this is not the same as the , then the parametric estimator is not 

consistent. The problem with TKE when T (x) is a cdf is that TKE is not useful to 

obtain . 

The double transformed kernel estimation (DTKE) method for estimating 

the quantile was proposed by [1].  First, we estimate the parameters of a parametric 

distribution. In our case, we propose to choose among the following set of 

parametric models: exponential, Weibull, Lognormal, Champernowne distribution 

and its generalizations. We use the generalized Champernowne cdf1 given that it 

provides the best fit to our real data set. Then, the data are transformed with a cdf 

function. Second, the transformed data are again transformed using the inverse of 

the cdf of a  distribution defined on the domain , this cdf and their 

pdf are: 

 

 

(see [1] for further details and [6] for computer codes in SAS and R). The double 

transformation approach is based on the fact that the cdf of a  can be 

estimated optimally using classical kernel estimation (see [18]).  Given that double 

transformed data have a distribution that is close to the  distribution, an 

accurate optimal bandwidth for estimating  can be used. For example, based 

on expression (8) and replacing  by the pdf of the Beta(3,3), i.e. , 

we obtain: 

.                                   (12) 

 

4.  Data Study 

We analyze a data set obtained from a Spanish insurance company that 

contains a sample of 5,122 automobile claim costs. This is a standard insurance 

loss data set with observations on the cost of accident losses, i.e. a large, heavy-

                                                           
1A generalized Champernowne distribution has the following cdf: 

 

where . 
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tailed sample containing many small values and a few large extremes. The sample 

represents 10% of all insured losses reported to the company’s motor insurance 

section.  

The original data are divided into two groups: claims from policyholders 

who were under 30 years of age (younger policyholders) when the accident took 

place and claims from policyholders who were 30 years old or over (older 

policyholders) when they had the accident that gave rise to the claim for 

compensation. The first group consists of 1,061 observations in the cost interval of 

1 to 126,000 and the second group comprises 4,061 observations in the interval 

ranging from 1 to 17,000. In Table 1 we present some descriptive statistics.  The 

loss distributions of both the younger and older policyholders present right 

skewness and, furthermore, the distribution of claim severity for younger drivers 

presents a heavier tail than that associated with the older drivers (see [4]). 

For each data set of younger and older drivers, respectively, we seek to 

estimate the  with and . The value at risk is needed to 

determine which of the two groups is more risky in terms of accident severity, so 

that a larger premium loading can be imposed on that group. The following 

nonparametric methods are implemented: i) The empirical distribution (Emp) as in 

expression (2), ii) the classical kernel estimation of a cdf (CKE), as described in 

section 3.2 with a bandwidth based on the minimization of WISE and iii) the 

double transformed kernel estimation of cdf (DTKE), as described in section 3.3 

with a bandwidth based on the minimization of MSE at . Epanechnikov 

kernel functions are used for CKE and DTKE. 

In Table 2 we show the values of estimates  and  using the 

original samples. For , all methods produce similar estimated values. 

However, with , the results differ from one method to another. We 

observe that for the older drivers, the classical kernel estimation produces a 

 estimate similar to the empirical quantile, while for the younger drivers, 

who they are the group with most risk, our proposed approach, which we call 

DTKE, provides estimates that lie considerably above the empirical quantile.  

 

Table 1: Summary of the younger and older drivers’ accident cost data 

 Younger Older All 

Number of observations     1,061      4,061 5,122 

Mean                      243.1 402.7 276.1 

Median                           66 68 67 

Std Deviation                    3,952.3 704.6 1,905.5 

Maximum                126,000.0 17,000.0 126,000.0 

Source: Own’s data. Cost of claims in monetary units. 
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The results in Table 2 show that the double transformation kernel 

estimation does not underestimate the risk. As expected, it is a suitable method “to 

extrapolate the extreme quantile” in the zones of the distribution where almost no 

sample information is available. The estimated  with this method is higher 

than the alternative nonparametric methods. 

Table 2: Value at risk with tolerance level  estimated for 

automobile claim cost data 

  Younger Older All 

 
    

 Emp 1104.00 1000.00 1013.00 

 CKE 1293.00 1055.33 1083.26 

 DTKE 1257.33 1005.98 1048.51 

 
    

 Emp 5430.00 3000.00 4678.00 

 CKE 5465.03 4040.40 4695.80 

 DTKE 7586.27 4411.11 4864.08 

Source: Own’s data. Cost of claims in monetary units. 

 

In Figure 3, we plot the estimated   for a grid of   between  and 

 for younger and older drivers, using the empirical distribution (Emp), the 

classical kernel estimation (CKE) and the double transformed kernel estimation 

(DTKE). Plots in Figure 3 show that Emp and CKE are very similar, i.e. in the 

zone where the data are scarce CKE does not smooth Emp. In both plots we 

observe that DTKE is a smoother version than Emp and CKE and, therefore, it 

allows the extrapolation of the  beyond the maximum observed in the sample 

with a smoothed curve. 

It is immediately apparent that the risk of a severe accident among the 

group of younger policyholders is higher than that recorded among the older 

policyholders. As a consequence, the risk loading should be proportionally higher 

for this younger age group. In other words, younger drivers should pay 

proportionally higher insurance premiums because they are more likely to be 

involved in severe accidents. 
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Figure 3: Estimated Value-at-Risk for tolerance levels (x-axis) above . 

Above: Comparison of three methods for all policyholders. Solid, dashed and 

dotted lines correspond to the empirical, the classical kernel and the 

transformed kernel estimation method, respectively. Below: Value-at-Risk 

estimated with double transformed kernel estimation given the tolerance 

level. Solid line and dotted line correspond to older and younger 

policyholders, respectively. 

 

To analyze the accuracy of the different methods we generate 1,000 

bootstrap random samples of the costs of the younger and older policyholders.   

Each random sample has the same size as the original sample, but observations 

are chosen with a replacement so that some can be repeated and some can be 

excluded. We estimate the  for each bootstrap sample. In Table 3 we show 

the mean and the coefficient of variation (CV). The coefficient of variation is used 

to compare accuracy given that the nonparametric estimates, except for the 
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empirical estimation, have some bias in finite sample size. The mean and the CV 

of the estimated  for the bootstrap samples, with α = 0.95 and α = 0.995, is 

shown for the claim costs of younger drivers, for the claim cost of older drivers 

and for all drivers together. The empirical distribution supposes that the maximum 

possible loss is the maximum observed in the sample. However, as the sample is 

finite and the extreme values are scarce, these extreme values may not provide a 

precise estimate of . So, we need “to extrapolate the quantile”, i.e. we need 

to estimate the  in a zone of the distribution where we have almost no 

sample information.  In Table 3 we observe that the bootstrap means are similar 

for all methods at , but differ when . Moreover, if we analyze 

the coefficients of variation we observe that, for the younger policyholders, the 

two kernel-based methods are more accurate than the empirical estimation. 

Given that the means of the  estimates for younger driver are larger 

than the means for the older drivers, we conclude that the younger drivers have a 

distribution with a heavier tail than that presented by the older policyholders. 

Table 3: Results of bootstrap simulation for value at risk estimation with 

tolerance level α in the automobile claim cost data 

  Younger Older All 

  Mean CV Mean CV Mean CV 

 
Emp 1145.02 0.124 1001.57 0.040 1021.92 0.034 

 CKE 1302.19 0.104 1060.24 0.051 1086.88 0.045 

 DTKE 1262.58 0.105 1008.28 0.054 1049.64 0.045 

 
Emp 5580.67 0.297 4077.89 0.134 4642.61 0.093 

 CKE 5706.69 0.282 4134.66 0.123 4643.42 0.087 

 DTKE 7794.70 0.217 4444.75 0.095 4883.85 0.080 

Source: Own’s data. Cost of claims in monetary units. Emp refers to the empirical 

distribution method, CKE is the method based on classical kernel estimation and 

DTKE is the double transformed method. 

For older drivers, and similarly for all the policyholders, empirical 

estimation seems the best approach at α = 0.95, but not at α = 0.995. 

When , underestimation of the Empirical distribution method 

(Emp) is evident compared to the lower quantile level at α = 0.95. The DTKE 

method has the lowest coefficient of variation compared to the other methods. 

The double transformation kernel estimation is, in this case, the most 

accurate method for estimating extreme quantiles, as is shown in the bootstrap 

approach described above. Therefore, the DTKE is a method that can be 

recommended to produce risk estimates at large tolerance levels such . 
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5.  Conclusions 

When analyzing the distribution of losses in a given risk class, we are 

aware that right skewness is frequent.  As a result, certain risk measures, including 

variance and standard deviation, which are useful for identifying groups when the 

distribution is symmetric, are unable to discriminate distributions that contain a 

number of infrequent extreme values. By way of alternative, risk measures that 

focus on the right tail, such as quantiles, can be useful to quantify risk and for 

comparing risk classes. 

In this paper we have proposed a system for measuring risk from loss data 

records that requires few statistical hypothesis on the distribution. We have also 

shown that certain modifications of the classical kernel estimation of cdf, such as 

transformations, give a risk measure estimate above the maximum observed in the 

sample without assuming a functional form that is strictly linked to a parametric 

distribution. Given the small number of values that are typically observed in the 

tail of a distribution, we believe our approach to be a practical method for risk 

analysts. 

Our method can establish a distance between risk classes in terms of 

differences in the risk of extreme severities. 
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